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This supplemental material includes additional derivations, imple-
mentation details, and experimental results. Please also see the sup-
plemental videos for visualizations of the focal stack experiments
and simulations.

S1 DERIVATION: SHIFT INVARIANCE WITH 1 SLM
Equation 9 in the main text describes the relationship between a
hologram with on-axis illumination and one with a tilted plane
wave illumination, speci�cally that the tilted plane wave results in
a translation. Here, we provide a derivation of this relationship.

Instead of the angular spectrum (ASM) propagation kernel de�ned
in the main text, here we use Fresnel propagation, which is the
paraxial approximation to ASM. Fresnel propagation can be written
as

PI {s(ÆG)} = F
�1�

F {s(ÆG)} � HI (ÆD)
 
, (1)

HI (ÆD) = exp( 9c_IkÆDk2). (2)

As in the main text, we de�ne gI,0 (ÆG) to be the electric �eld after
propagating a distance I given on-axis illumination:

gI,0 (ÆG) = PI {s(ÆG)} (3)

Similarly, gI,<8 (ÆG) is the electric �eld after propagating distance I
given tilted plane wave illumination with slope Æ<8 :

gI,<8 (ÆG) = PI {p(ÆG ; Æ<8 ) � s(ÆG)} (4)

p(ÆG ; Æ<8 ) = 4 9 ( ÆG · Æ<8 ) . (5)

For notational convenience, we let GI,0 (ÆD), GI,<8 (ÆD), and S(ÆD) be
the Fourier transforms of gI,0 (ÆG), gI,<8 (ÆG), and s(ÆG), respectively.

Combining Eqs. 1, 4, and 5 yields:
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Next, we use Eq. 2 to simplify the propagation kernel term in Eq. 10:
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= HI (ÆD) � exp ( 9_IÆD · Æ<8 ) � 2 (13)

where 2 = exp( 9_Ik Æ<8 k
2
/4c ) is a constant phase o�set. As as con-

stant phase o�sets cannot be measured, we drop 2 going forward.

Substituting Eq. 13 back into Eq. 10 gives:
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where we’ve taken advantage of the relationship GI,0 (ÆD) = S(ÆD) �
HI (ÆD). Finally, we take the inverse Fourier transform of both sides
to get:
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This gives the relationship in the main text showing that the elec-
tric �eld is a shifted version of that on-axis, up to a carrier wave,
4 9 ( ÆG · Æ<8 ) .

S2 DERIVATION: FOCAL STACK BLUR PARAMETERS
The amount of blur needed for a holographic display depends on
how the system is con�gured, particularly the focal length of the
eyepiece which sets the �eld of view and eyebox size of the display.
If 5 is the focal length of the eyepiece, then

FoV = 2 tan�1
⇣
F
25

⌘
, (18)

eyebox = 25 tan(\ ), (19)

whereF is the SLM width and \ is the maximum di�raction angle
de�ned as

\ = sin�1
⇣
_
2?

⌘
, (20)

for an SLM with pixel pitch ? . For our display, we assume an 8 �m
pixel, matching the Holoeye Pluto-2.1 SLM used in our experiments.

Since we target natural defocus blur that matches what the user
would see in the real world, we set the focal length of the eyepiece
such that the eyebox size is similar to the size of a human pupil,
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Fig. S1. Experimental Prototype Photos: (Le�) Photograph of benchtop experimental setup with beam path drawn. (Right) Close-up of the experimental
multisource illumination module. This consists of an array of 4⇥4 sources that were split from a single SLED. The fiber tips are held in place by a 3D printed
mount.

chosen to be 3.5mm. Assuming a nominal wavelength of 520 nm,
this yields an eyepiece focal length of 5 = 53.8mm.
We target a focal range of 4 diopters, from optical in�nity to

25 cm to enable proper focal cues for near objects within arms reach.
Based on the thin lens equation, this requires 9.5mm of axial range
at the SLM.We round to 10mm for our experiments and simulations,
which corresponds to a volume from 23.4 cm to optical in�nity.

To determine the amount of blur to render, we use the maximum
di�raction angle, which de�nes the cone of light that focuses to a
point in the image plane when the eyebox is uniformly �lled. Based
on the geometry of this cone, the circle of confusion diameter in
units of pixels is described by

2 = 2XI? tan(\ ), (21)

where XI is the axial distance from the focal plane.
Once again, using a nominal wavelength of 520 nm, the maximum

di�raction angle is \ = 1.86�, which yields a blur diameter of 8.1
pixels per millimeter of defocus. We use these parameters for all of
our target focal stacks.

S3 SIMULATION IMPLEMENTATION DETAILS
The equations in the main paper describing the image formation
model are written in continuous space, but when solving for the
SLM patterns, we need to discretize. We choose to conduct simula-
tions at 2⇥ the resolution of the SLM in each direction (i.e. there are
2 ⇥ 2 pixels in the simulation for each SLM pixel) to prevent alias-
ing. Aliasing can occur without upsampling because the maximum
spatial frequency of the signal doubles when taking the absolute
value squared to get intensity. Therefore, a complex signal at the
maximum frequency the SLM can produce (for example: +1, -1, +1,
-1, ...) cannot be represented after converting to intensity (now: +1,
+1, +1, +1,...). To maintain that spatial frequency in the �nal intensity
image, the original complex signal needs to be sampled at 2⇥ the
SLM resolution.

Aliasing from this e�ect is usually ignored in holographic display
papers, and the e�ect is not usually substantial. However, we found
with multisource holography that the aliasing can make it appear as
though there is an angularly-varying response with only 1 SLM (i.e.
Eq. 9 in the main text is not true with aliasing). Since the aliasing
isn’t physical, this can lead to incorrect conclusions, particularly
for closely spaced sources. Therefore, we upsample in all of our
simulations.
However, upsampling makes higher orders apparent in the sim-

ulation, but we assume these will be �ltered out in the �nal setup.
Therefore, in our simulations, we implement a low pass �lter that
removes the higher orders after each SLM. In addition, we would
like our target image to have the same number of degrees of freedom
as the SLM to avoid having a poorly posed optimization problem.
Therefore, after taking the intensity, we downsample the model
output before calculating the loss.

We note that it might seem redundant to upsample and then later
downsample, but the model output is slightly di�erent. This is most
important for simulating accurate behavior when the sources are
spaced closely together; without upsampling, sources close together
do not create a blurry output due to the non-physical aliasing, which
makes this situation appear better than it is in practice.

S4 EXPERIMENT PHOTOS
Figure S1 shows photographs taken of our experimental benchtop
prototype. As described in the main text, the prototype uses two
SLMs. There is a 45 system between the SLMs and a second 45
system between the �nal SLM and the detector. Irises at the Fourier
plane of each 45 system block higher orders. Although we collect
all our calibration data with the �nal camera, another detector in
the front left corner can optionally be used to collect calibration
data before the beam interacts with the second SLM.
The right image of Fig. S1 shows a close-up of the multisource

illumination module, which is made of 16 �ber tips held together in
a 3D printed housing. As described in the main text, we use a low



Multisource Holography: Supplemental Material • 3

Fig. S2. E�ect of SLED on Speckle: Speckle was generated by simulating a random phase distribution on the SLM and propagating by 20mm, and we show
this speckle under both monochromatic illumination and SLED illumination. To simulate the SLED, we assume a Gaussian spectral profile (shown on the le�)
and sum over 50 discrete wavelength samples. The broader bandwidth of the SLED creates slight blurring of the intensity compared to monochromatic light.

Fig. S3. E�ect of SLED on Hologram: Here we simulate a 2D hologram optimized assuming monochromatic illumination. (Le�) Simulation of the optimized
SLM pa�ern displayed with ideal monochromatic illumination. In this case there is no model mismatch and the reconstruction matches the target well. (Right)
Simulation of the optimized SLM pa�ern displayed with the SLED illumination. Since the pa�ern is not optimized with the SLED bandwidth, the mismatch
creates artifacts and reduces the PSNR compared to the ideal case. We expect similar artifacts could be present in our experimental results since we do not
model the SLED during optimization. However, some artifacts may be diminished through our active camera-in-the-loop calibration.

coherence SLED as the light source and split the output into the 16
�bers. Due to the low coherence, the outputs from each �ber are
incoherent with each other, as required by our method.

S5 MODELING SPECTRAL BANDWIDTH
Section 3 of the main text assumes that each source is monochro-
matic but in our experimental setup we use a SLED which has
nonnegligible bandwidth. Here, we show how our model can be ex-
tended to sources with broader spectral bandwidth. Given a source
with emission spectrum, @(_), we can describe the intensity at the
image plane as

II,@ (ÆG) =
π

II (ÆG)@(_)3_, (22)

where II (ÆG) is the intensity assuming monochromatic illumination
de�ned in the following equations of the main text: Eq. 1 for single
source, Eq. 8 for multisource with one SLM, and Eq. 11 for mul-
tisource with two modulators. Here we assume the spectrum is
normalized such that

Ø
@(_)3_ = 1.

To calculate Eq. 22 in practice, one can take the approach of Peng
et al. [2021] and discretize the continuous emission spectrum:

II,@ (ÆG) ⇡
’
=

II (ÆG)@
⇣
_ (=)

⌘
, (23)

where _ (=) is a discrete wavelength sample. For computational
e�ciency, a subset of discrete wavelengths can be stochastically
sampled during each iteration. However, this still increases com-
putational cost. Since multisource holography is already a compu-
tationally intensive method, in our results we chose to optimize
assuming monochromatic light.

Figures S2 and S3 illustrate the e�ect of the SLED on speckle and
optimized holograms. In Fig. S2, we simulate a random phase pattern
on the SLM with both monochromatic and SLED illumination, and
generate speckle by propagating the beam by 20mm. For the SLED,
we assume a Gaussian spectrum with standard deviation of 3 nm.
We simulate the SLED bandwidth using Eq. 23 with 50 discrete
samples over a 19 nm range. To visualize the subpixel di�erences
between the illumination sources, we conduct the simulation at 4⇥
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Fig. S4. Analysis of SLM Spacing: In simulation, we calculate PSNR (top)
and contrast at 1 arcmin (bo�om) as a function of the gap between the
two SLMs, �I. Here, we simulate 4 ⇥ 4 sources spaced �< = 25 rad/mm
apart. The number of sources within the memory e�ect region is indicated
by the background color of the plot. When the SLMs are closer together,
more sources fall within then memory e�ect region and therefore cannot
be controlled independently, resulting in blurring or replicas in the output
hologram. Although PSNR does a poor job of capturing this artifact, our
contrast metric shows worse high resolution contrast when the SLMs are
close together. As �I increases, contrast rises until all of the sources are
outside the memory e�ect region.

the SLM resolution in each direction. As shown in Fig. S2, the extra
bandwidth of the SLED creates a small but visible blur in the speckle
image, which is clearly evident in the di�erence image on the right.

Next, we examine how the SLED impacts a hologram by optimiz-
ing an SLM pattern to produce a 2D image at a 20mm propagation
distance. Here, we optimize assuming monochromatic illumination
(520 nm) in the forward model. Figure S3 compares the ideal case
(reconstruction given ideal monochromatic illumination) to the re-
alistic case with SLED illumination. When the illumination matches
the model, the reconstruction does not have noticeable speckle or
other artifacts. However, when the SLED is used, there is additional
speckle from the model mismatch.

This scenario is analogous to our experiments where we optimize
assuming monochromatic light (for computational tractability) but
display on a system with SLED illumination. Therefore, we expect
there may be artifacts in the experimental results due to the SLED,
and modeling the SLED in the optimization (using Eq. 23) could
improve the experimental results. However, since we use active

Fig. S5. Simulated Eyebox of Experimental SLM Pa�erns: Here we
show the simulated eyebox for both single and multisource holography that
is created when we display the two SLM pa�erns. Except for the DC-term
which is almost unavoidable due to field fringing, the eyebox is uniformly
filled in both experiments. The multisource holography eyebox appears
smoother due to its reduced speckle.

camera-in-the-loop (ACiTL) in our experiment, some of these arti-
facts may have been corrected as ACiTL uses the true experimental
system when updating the SLM pattern and can therefore account
for the SLED. We also note that the SLED was used for both our
multisource and single source experiments, so any artifacts due to
illumination will appear in all results.

S6 ANALYSIS OF SLM SPACING
In Section 4.3 of the main text, we analyze the impact of the number
of sources and source spacing on multisource holography. Here, we
provide a similar analysis on the spacing between the SLMs, �I,
shown in Fig. S4. As in the main text, we compute both PSNR and
contrast at 1 arcmin (the highest spatial frequency we can show
with the SLM, with a period of 2 SLM pixels). We �x the number
of sources at a 4⇥4 grid and we set the spacing between sources
to be 25 rad/mm. Based on Eq. 13 of the main text, we calculate
the number of sources within the memory e�ect region, which is
indicated by the background color in Fig. S4.

As with our analysis of source spacing in the main text, we expect
that when sources are within the memory e�ect region of the two
SLMs, they cannot be controlled independently, making the image
generation problem poorly posed. However, in this scenario, PSNR
can be a misleading metric since replicas caused by the di�erent
sources still reduce speckle (which is heavily penalized by PSNR).
PSNR is not sensitive to the blurring due to the di�erent sources,
resulting in a higher PSNR when the SLMs are close together. How-
ever, this blurring is undesirable since it prevents us from producing
high resolution features in the image. As in the main text, our con-
trast metric captures this trend, with lower contrast when more
sources are within the memory e�ect region. Once all the sources
are outside the memory e�ect, the maximum contrast is reached.
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Fig. S6. Breaking the Memory E�ect: Both images show the experimental measurement when uniform white noise is displayed on the SLMs using our
multisource setup with 4 ⇥ 4 sources. For the le� image, only the first SLM was modulated, and the second SLM was kept constant, simulating the case
with only one SLM. In this scenario there is structure in the noise from the locations of the sources. This structure is even more evident in the spectral plot
which shows a grid pa�ern. In contrast, for the right image, both SLMs were active and displaying uniform random noise, eliminating the pa�ern in the
measurement and its Fourier transform.

S7 ADDITIONAL EXAMPLES
S7.1 Full Bandwidth Holograms
To demonstrate that our experimental holograms are truly random
phase, we show at the eyebox which is calculated using our cal-
ibrated model. Figure S5 illustrates the simulated eyebox for the
�ower scene of Fig. 7 in the main test, comparing both multisource
and single source holography. These eyeboxes are computed by
passing the SLM patterns through the physically-calibrated model
until the �nal aperture is reached. At this point, we calculate the
magnitude of the eyebox, and for the multisource setup, an average
is calculated from all 16 modes.

The simulation reveals a near-uniform distribution of the eyebox
across the entire available area, thereby con�rming the SLM pat-
terns are random phase. It is worth noting the visibility of the DC
peak in the eyebox, with a single peak for the single source setup
and one peak per source for the multisource setup. This peak is
predominantly attributable to �eld fringing in the liquid crystal-on-
silicon (LCoS) modulator. Although we account for �eld fringing in
the model, it still creates unmodulated light that contributes to the
DC term.
The DC peak could potentially be eliminated, for instance, by

incorporating a DC block into the relay system or using di�erent
SLM technologies, such as a MEMS-based devices [Choi et al. 2022;
Ouyang et al. 2022]. MEMS SLMs do not exhibit DC peaks resulting
from �eld fringing since they use micro-mirrors to modulate the
light instead of liquid crystals.

S7.2 Memory E�ect Demonstration
Figure S6 shows an example of how the memory e�ect manifests in
our experimental setup with 16 sources arranged in a grid. On the
left, we display a random pattern on just one of the SLMs while the
other is kept constant. This mimics the case of a single SLM, and in
this scenario, the 16 independent sources create correlated outputs,
as explained in Sec. S1. This correlation manifests as recurring struc-
tures within the captured images, distinctly visible in the Fourier

Transform spectral image of the captured data. However, when both
SLMs are displaying random patterns (right), the correlations vanish
and the spectrum no longer has a grid structure.

S7.3 Temporal Multiplexing with More Frames
In the main text, we demonstrate that multisource holography out-
performs temporal multiplexing with 6 frames, both quantitatively
and qualitatively. In Fig. S7 we compare multisource against tem-
poral multiplexing with more frames. Here, we simulate temporal
multiplexing assuming a single phase only SLM, and the frames
are jointly optimized as described in the main text. For multisource
holography, we simulate 4⇥4 sources to match the experimental
setup.
With 16 sources, multisource holography performs similarly to

temporal multiplexing with 8 frames. We note that multisource has
a quarter of the degrees of freedom compared to temporal multi-
plexing (1 frame with 2 SLMs vs. 8 frames with 1 SLM), so even
though multisource has more incoherent averages (16 vs. 8), the
two methods perform similarly. As the number of frames increases,
temporal multiplexing begins to exceed multisource quantitatively.
This is also visible in the reduced speckle, which is most apparent
in smooth regions of the image. However, this speckle reduction
comes at the direct cost of temporal bandwidth.

S7.4 Comparison of Configurations in 2D
The 2D results in the main paper were optimized using both SLMs to
present a fair comparison in terms of degrees of freedom for single
source and multisource. To demonstrate that, in the single source
case, this is equivalent to the traditional holography setup with only
1 SLM, we show an example where we optimized for a 2D pattern
using only 1 SLM (the second SLM in the system), displayed in
Fig. S8 (top row). As described in the main text, multisource shows
blurring and ghosts when optimized with only a single SLM.

All our results in themain text use the “active” camera-in-the-loop
(ACiTL) approach of Peng et al. [2020] to �ne-tune the SLM patterns
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PSNR: 27.18 dB 
SSIM: 0.854 

PSNR: 28.82 dB  
SSIM: 0.927

Single Source, 16 Frame AverageSingle Source, 8 Frame Average Single Source, 32 Frame Average

PSNR: 27.98 dB  
SSIM: 0.815

4x4 Multisource, Single Frame Target

PSNR: 29.03 dB  
SSIM: 0.947

Fig. S7. Temporal Multiplexing with More Frames: In simulation, we compare multisource holography with 16 sources to temporal multiplexing with 8,
16, and 32 frames. Multisource holography performs similarly to temporal multiplexing with 8 frames: even though there are more incoherent averages in our
approach, multisource holography has fewer degrees of freedom compared to temporal multiplexing, which limits the amount of despeckling. As the number
of frames increase, temporal multiplexing outperforms multisource, but at the expense of temporal bandwidth.

for a particular image. Fig. S8 also shows examples without this extra
calibration. The results without ACiTL still use the calibrated model,
which is �t completely o�ine and generalizes to new content, but
they do not use the online calibration. Although the image quality
is better for both single and multisource with ACiTL, it is clear
that multisource outperforms single source even without ACiTL.
ACiTL is particularly helpful in cleaning up artifacts at the edges
of the �eld of view where the calibrated model is less accurate.
We anticipate that improvements to the calibration pipeline could
enable the quality of the ACiTL results without active �ne-tuning.

Finally, we test the ability of our model to generalize by displaying
2D images at several depths. Our model was calibrated using only
data collected at I = 20mm, but, as shown in Fig. S8, the model
performs very similarly at I = 15mm and I = 25mm, even without
ACiTL. By 30mm there is some degradation in the images without
ACiTL, showing that the model is best within a few millimeters
of the calibration plane. However the 10mm range is su�cient to
cover the focal stack of interest.

Close-up crops that better capture speckle are shown for all these
comparisons in Fig. S9.

S7.5 Focal Stacks with and without ACiTL
Figures S10, S11, and S12 show experimental comparisons with
and without ACiTL on three focal stacks examples. As with the 2D
results above, here, all results use the calibrated model that is �t

o�ine. The ACiTL results are additionally �ne-tuned in the loop,
using the gradients of the calibrated model for backpropagation.
The no ACiTL results are not �ne-tuned experimentally.

Once again, ACiTL o�ers an improvement in image quality, al-
though we point out that the multisource result without ACiTL
is higher quality than single source result with ACiTL indicating
the magnitude of improvement provided by multisource hologra-
phy. We again expect that improvements to the o�ine calibration
could enable the quality of the ACiTL results without needing active
�ne-tuning.

S7.6 Raw Image Captures
To demonstrate that there is no substantial post processing in the
results in themain text, we show examples of the raw image captures
in Fig. S13, without any alignment or cropping. The only processing
is converting the three monochrome captures into one color image.
Images in the main text have been warped into the frame of the
SLM using the TPS deformation model and the edges are cropped.
As you can see in Fig. S13 the image quality is the same without
this warping.

S8 CALIBRATED MODEL
Next we discuss some additional details of the calibrated model used
for our experimental results, and we visualize the parameters that
the model learns. Recall that we calibrate separate models for each
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color and each setup type (single source vs. multisource), giving a
total of 6 di�erent models that are all independent.

S8.1 Warping between SLMs
A key part of making our 2 SLM setup work in practice is the
deformation map between the two SLMs, which we’ll call SLM1 and
SLM2. This involves mapping the complex �eld after SLM1 into the
coordinate system of SLM2. We implement this warping using the
thin plate spline (TPS) model from Kornia [Riba et al. 2020].
To �t the TPS model, we �rst optimize each SLM pattern sepa-

rately to generate a grid of dots at the camera. We use an asymmetric
dot pattern to ensure that orientation changes due to the beamsplit-
ter (which �ips the image left-right) and 45 system (which �ips
the image in both directions) are captured correctly. We detect the
dot centers, which are in the camera coordinate space, and �t a
TPS model from SLM1 to the camera and a second TPS model from
SLM2 to the camera. Next, we use linear algebra to compute the TPS
transformation between SLM1 and SLM2. Finally the TPS transform
parameters are �ne-tuned with gradient descent along side the other
parameters in the learned model.

The TPS transformation between SLM1 and SLM2 is visualized in
Fig. S14. Note that because of a slight misalignment (there’s some
rotation and translation), we cannot make use of the full SLM �eld
of view. We therefore restrict our evaluations to the valid region
where both SLM1 and SLM2 can modulate the wavefront.

The dot patterns used for �tting the TPS show interesting behav-
ior in the multisource case. Figure S15 shows the captured image
with multisource illumination using the same dot patterns and com-
pares these images to our model output. In these images, the relative
locations and intensities of the sources are clearly visible, and our
model is able to match the measurement well even though this data
is very di�erent than the training data used to �t the model.

S8.2 Global Learned Apertures
In the main text, we describe how our model uses a spatially vary-
ing aberration function during propagation. In practice, we split
this aberration map into two components, a global aperture that is
applied to every �eld location, and a spatially varying component
that is applied locally after.

The global aberration function is parameterized by Zernike coef-
�cients (40 coe�cients) to describe the phase, and a binary circular
aperture where the size and location of the aperture are learned.
This parameterization allows us to resize the aperture to any arbi-
trary crop shape on the �y, allowing our model can be evaluated
with di�erent simulation sizes. The global aberration functions are
visualized in Fig. S16, where “aperture 1” is the aperture between
the two SLMs and “aperture 2” is the aperture between SLM2 and
the camera.

S8.3 Spatially Varying Aberrations
To model the in�uence of spatially varying aberrations, we learn
a location-dependent 2D pupil function for both relay systems in
addition to the global aperture described above. The total aperture
is the product of the two and they could be learned together, but we

choose to learn them separately to provide more �exibility in the
software.
The spatially varying aberrations are parameterized with by a

128⇥128 complex valued function that is upsampled with bilinear
interpolation to the full pupil size. This providesmore total �exibility
than the more restrictive parametrization of the global apertures.
We can compute aberration maps at arbitrary locations through
bilinear interpolation of the learned aperture functions.
In Fig. S17 and S18, we visualize our learned spatially varying

aberration functions at a grid of 6 ⇥ 11 pupil positions. We expect
that spatially varying aberrations should change smoothly, which
we see in the visualization, suggesting that our model is learning
something physically meaningful.

S8.4 SLM Lookup Table
Fig. S19 shows the learned lookup table (LUT) for the two SLMs
used in the prototype. Each LUT contains 256 values representing
the conversion from digital input to phase. Since the two SLMs
are not the same, they have di�erent LUTs: the �rst SLM’s LUT is
approximately linear, while the second has some non-linear behavior
that’s captured by our model.

S8.5 Calibration Pa�erns
Figure S20 shows examples from our training dataset of the SLM
patterns and captured images pairs, which we use for calibration.
To produce the SLM patterns, we start with uniform random phase
and apply a Gaussian kernel with variable standard deviation to
generate variable amounts of blur in the SLM pattern. After blurring,
SLM patterns are normalized to cover the full phase range (0-255).
The blurring creates images with di�erent feature sizes, which

provide diversity of data needed to �t di�erent parameters in the
model. For example, the low frequency images, which were blurred
with a larger Gaussian kernel, are useful for calibrating the TPS
warping. The higher frequency images are needed to calibrate the
aberrations, �eld fringing (cross-talk) kernel, and LUT.
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Fig. S8. Experiment (2D Comparison): In this figure, we compare several di�erent setup configurations on 2D image content. The first row shows results
where only one SLM is active and the other is kept constant. In particular, you can see that while the single source model can achieve good image quality,
the multisource image looks blurry due to the infinite memory e�ect explained in the main paper. In the last 4 rows, both SLMs are active and content is
displayed at di�erent depth planes. Even though the model was only trained for one specific depth (20mm) it generalizes well to other locations, especially in
the desired propagation range of ±5mm. Finally, we also show results with and without the active camera-in-the-loop (ACiTL) approach of Peng et al. [2020].
Although ACiTL improves image quality for both single and multisource holograms, it’s still evident that multisource results in reduced speckle even without
ACiTL. (See Fig. S9 for detailed crops.)
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Fig. S9. Experiment (2D Comparison): Close-up crops of the same images show in Fig. S8.
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Fig. S10. Experiment (Focal Stack | ACiTL vs Learned Model): This figure shows a focal stack scene with natural defocus blur for both single and
multisource optimized with ACiTL (using the proxy gradients of the calibrated model) vs. with the calibrated model only without ACiTL. While image quality
with the learned model is already good, the ACiTL shows some clear improvement, especially in terms of noise. However, the multisource experimental capture
without ACiTL is less noisy than the single source capture with ACiTL, highlighting the improvement that multisource holography provides.
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Fig. S11. Experiment (Focal Stack | ACiTL vs Learned Model): This figure shows a focal stack scene with natural defocus blur for both single and
multisource optimized with ACiTL (using the proxy gradients of the calibrated model) vs. with the calibrated model only without ACiTL. While image quality
with the learned model is already good, the ACiTL shows some clear improvement, especially in terms of noise. However, the multisource experimental capture
without ACiTL is less noisy than the single source capture with ACiTL, highlighting the improvement that multisource holography provides.
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Fig. S12. Experiment (Focal Stack | ACiTL vs Learned Model): This figure shows a focal stack scene with natural defocus blur for both single and
multisource optimized with ACiTL (using the proxy gradients of the calibrated model) vs. with the calibrated model only without ACiTL. While image quality
with the learned model is already good, the ACiTL shows some clear improvement, especially in terms of noise. However, the multisource experimental capture
without ACiTL is less noisy than the single source capture with ACiTL, highlighting the improvement that multisource holography provides.

Fig. S13. Raw Camera Capture:We show examples for both single source and multisource of the raw camera images before any alignment or cropping is
applied. The only processing is combining the three monochrome captures into a color image.
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Fig. S14. Visualization of Warping Between SLMs:We visualize the transformation between the two SLMs, which is modeled using a thin plate spline
(TPS) deformation model. Using a displayed grid of dots, we calculate a TPS mapping from SLM1 to the detector and from SLM2 to the detector. Then, we
convert these mappings into a TPS from SLM1 to SLM2. Our dot pa�ern is asymmetric which helps ensure the orientation is correct.

Fig. S15. Experimental Image of Dots with Multisource Illumination: If we optimize an SLM pa�ern to create a grid of dots with a single source, when
we illuminate the same pa�ern with our multisource configuration, we see an image of the source at each dot location. Here, we see a 4 ⇥ 4 grid of sources at
each location where there is a quadratic phase in the SLM pa�ern. Comparing the experimental measurement to our model output, one can see the the model
is able to learn the locations of the sources and their relative intensities fairly accurately.
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Fig. S16. Calibrated Global Apertures: The global apertures learned by our model, visualized here for each color, are applied in a non-spatially varying
manner and are parameterized by a circle in amplitude and Zernike coe�icient in phase. We learn a separate aperture for each propagation: “Aperture 1” is
applied during propagation between the two SLMs and “Aperture 2” is applied during propagation from the second SLM to the sensor. Note that the same
physical aperture appears to be di�erent sizes for di�erent wavelengths since we visualize the apertures in relative frequency coordinates which scale with
wavelength.
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Fig. S17. Spatially Varying Aberrations for Aperture 1:We visualize the spatially varying aberration map for “Aperture 1” (between SLM1 and SLM2),
evaluated at 6 ⇥ 11 locations in the field of view of the SLM. The spatially varying aberrations change smoothly over the field of view, which matches our
physical intuition of how aberrations vary with field position.
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Fig. S18. Spatially Varying Aberrations for Aperture 2: We visualize the spatially varying aberration map for “Aperture 2” (between SLM2 and the sensor),
evaluated at 6 ⇥ 11 locations in the field of view of the SLM. The spatially varying aberrations change smoothly over the field of view, which matches our
physical intuition of how aberrations vary with field position.
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Fig. S19. Calibrated Lookup Tables: To calibrate how the SLM transforms a digital signal to a phase o�set, we learn a lookup table (LUT) for each SLM. The
LUT contains one phase value for each possible digital input (0-255), and is made di�erentiable though 1D interpolation. We calibrate a di�erent LUT for each
color. Note that SLM1 has an approximately linear LUT, but SLM2 shows non-linearities which must be accurately captured by the model to form high quality
holograms.
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Fig. S20. Example Calibration Images:We show examples of the SLM pa�erns and captured images used for training our physically-based model. The SLM
pa�erns are blurred with a Gaussian kernel of variable width to create a range of spatial frequencies in the calibration dataset. We use 7 di�erent blur levels in
total, but only visualize 4 here, and we visualize crops of 600⇥600 pixels in the center of the SLM. Sample experimental measurements used for training are
shown in the right-most column, and the output of our calibrated model is shown adjacent. The model output and measurement are visually similar, although
there are di�erences at the edges due to di�erences in boundary conditions. To prevent these from impacting model calibration, we further crop these images
to a region without boundary artifacts before computing the loss.
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